a2 United States Patent

US009128943B1

(10) Patent No.: US 9,128,943 B1

Khanduja et al. 45) Date of Patent: Sep. 8, 2015
(54) METHOD AND SYSTEM FOR TRACKING (56) References Cited
RE-SIZING AND RE-CREATION OF
VOLUMES CREATED FOR MAKING U.S. PATENT DOCUMENTS
INCREMENTAL BACKUPS 7424,592 B1* 9/2008 Karretal.ccccoenee. 711/203
2009/0300080 Al* 12/2009 Stringham 707/204
(75) Inventors: Vaibhav Khanduja, Bangalore (IN); 2011/0088027 Al* 4/2011 Jelvisetal. . 717/174
Shankar Balasubramanian, Banga]ore 2011/0154473 Al* 6/2011 Anderson et al. . 726/11
(IN); Sureshbabu Murugesan 2011/0246731 Al* 10/2011 Ninoseetal. 711/162
Krishnagiri (IN) * cited by examiner
(73) Assignee: EMC CORPORATION, Hopkinton, Primary Examiner — Alexey Shmatov
MA (US) (74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
Todd A. Noah
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (57 ABSTRACT
U.S.C. 154(b) by 98 days. A method for tracking resizing and recreation of volumes in a
block-based snapshot backup program. In an embodiment, a
21) Appl. No.: 13/248,223 record ID is associated with a major and minor number
(21) App) j
assigned to each volume to be backed up. The record ID
(22) Tiled: Sep. 29, 2011 maintains a unique reference to the bitmap corresponding to
abacked up volume in case the minor number is reused by the
(51) Int.Cl volume manager driver during a recreate operation. The
P length of the volume to be maintained is maintained and
GO6F 17/30 (2006.01) -
(52) US.Cl compared to the length of the to track any resizing of the
2. volume by the volume manager. In the event of any resizing or
C.PC e GO6F 17/30091 (2013.01) recreation, the original bitmap can be replaced with an
(58) Field of Classification Search updated bitmap to ensure proper backup of the resized or
CPC it GOG6F 17/30091 recreated volumes.
USPC vt 707/646, 999.204
See application file for complete search history. 20 Claims, 5 Drawing Sheets
4 Storage Stack 202)
Filesystem 204
Volume Manager 206
216
Mirror
212 214
Concat Striped

MPIO (VXDMP, PowerPath, Native MPIO - LeadVille) 208

Disk (LUN) 210

US 9,128,943 B1

Sheet 1 of 5

Sep. 8, 2015

U.S. Patent

L Ol

]
A3z ereg —

og 1~ [eulslx3 io}
oomtmE_l_
% — _ S3|NPOIN
gcl 18410
suoyeoiddy bwcm ejeq mmm._ouw
/seoineq 2Ieq §
%wmwﬂ weuboid
— 1481
wol4/ot OOMUMHC_ \ mEmL@M.“un_ }
AHHV LUONBOIUNLULLOYD) uonedlaay
P WIBISAS
% o7 =21 | | Buneiedo
Joyde _
>.M_mevﬁ/_* 10SS800.1d 31T A_\/_<Iv
goTTITImeeNY
omr\..m solg
foococonscseesal
Reidsi T 91T (Wow)
\ [ewiog _ Ae(dsi
vel _LQ Q0B LI 1951d
00} feidsig

ol

vel

yOl

P

US 9,128,943 B1

Sheet 2 of 5

Sep. 8, 2015

U.S. Patent

¢ DI

01¢ (NN7) Msia
807 (elllAPE®T - OIdIN 8AlIBN ‘Ulediamod ‘dINaXA) OIdN
. SO SOWd
O iR
{Feg] ueg| e e (e (Fueq]
(3 Jfafraqrayray
LY LY LY
£75) [
9] [11
PR IEE]
3] [
buidng
m pading Jeouo)
biEY m JOIIN 1414 AL
81C I1C 907 Jebeuey swn|oA
707 wolsAsali4
707 ¥oelg abeliolg

U.S. Patent Sep. 8, 2015 Sheet 3 of 5 US 9,128,943 B1

/300
332 384 386
MINOR NUMBER BITMAP RECORD ID NUMBER
1010 BMI 1.0
1011 BM2 2.0
1111 BM6 6.0

FIG. 3

(Init info - len, rid,

U.S. Patent Sep. 8, 2015 Sheet 4 of 5 US 9,128,943 B1
402 .
Snapimage User Space Driver 403
‘ Discovgry Driver Attach (Creation
tltJ\sm% vxpdr||nt gtta't1 of Control Device - sync)
e rid and leng
of the volume 410~ r412 / 422
Y N
404 Vo 406 Getobjct (DS) associaled O— s anézgﬁmental -~©)
.| with driver correspondingto P
disk with major/minor
414 424
No >
417
] Get lenqéh,
416 | part number, .
406 part ength, No resize
this a manage size, efc. using condition
device? I0CTL and
Initialize . driver " create bitmap 426

No resize

major and minor *
number) Lﬁ:ggniéegﬁéh 0 ® Yes w condito
create bit map ® 428
420 430
Create device instance '
: - Destroy bitmapand |
pseudo device, overwrite ®—
strategy and detach routine other data Srctures

for the major number

y

Perform Backup
408~

Y

D

b

FIG. 4

U.S. Patent

Sep. 8, 2015 Sheet 5 of 5 US 9,128,943 B1
Incremental Backup Workflow
Snaplmage User Space 5(2 Wi Driver 504
Discovery Driver Attach
(FS, Managed (Creation of Control |_519
506~ (Volume Manager, Device - sync)
etc.) or Unmanaged
(SD, PowerPath, etc.))
y
Get object (DS)
associated with 514
driver corresponding
to disk with major/minor
508~
Convert the bitmap 516
Get Changed blocks into an extent list T
from the driver
(GetBLIList)
Y
Send the extent list
back to user space 518
3
—A—CD
}
510~ Perform backup
of Changed blocks
FIG. 5 500

US 9,128,943 B1

1
METHOD AND SYSTEM FOR TRACKING
RE-SIZING AND RE-CREATION OF
VOLUMES CREATED FOR MAKING
INCREMENTAL BACKUPS

BACKGROUND

In computer storage, a volume management scheme pro-
vides a method of allocating space on mass-storage devices
that is more flexible than conventional partitioning schemes.
In particular, a volume manager can concatenate, stripe
together or otherwise combine partitions into larger virtual
units that administrators can re-size or recreate, potentially
without interrupting system use. Supporting backups for a
high-density file system using traditional mechanism of
walking through the files and collecting information can often
be very slow. Snapshot techniques, such as the Networker
Snaplmage Module solve this problem by taking snapshot
images of the file system to perform live backups at the block
level. Unlike disk-level backup systems, resizing or recreat-
ing a volume requires block-level snapshot programs like
Snaplmage to track and accommodate any resizing or recre-
ation of blocks to ensure proper backup operation.

Backup applications supporting block-level incremental
backup are built upon tracking writes onto volumes. The
UNIX volume manager creates volume devices conforming
to standards making a block and or character device for each
volume it creates. Each block/character device is represented
using a major and minor number. To track writes to the vol-
ume, the snapshot program creates a bitmap indexed using
major and minor number of the volume device. The length of
the bitmap is directly proportional to the size of volume. The
change in size of volume needs to be tracked so that the
bitmap can be adjusted accordingly. Volume manager pro-
grams usually provide a user interface that allows deletion
and re-creation of the same volume. Administrators may re-
create volumes for number of reasons, such as changing the
disk layout from concatenated to striped, or vice versa. Re-
creation or re-sizing of a volume may result in a new pseudo
volume device with a minor number that may have been
previously used. Any such repetition must be tracked and
reported to the snapshot backup application so that the bitmap
created for that volume can be flushed or recreated. If any
repetition of the major/minor number is not tracked, the snap-
shot program may perform an incomplete or incorrect
backup.

In present backup systems, the change in length or recre-
ation of a volume is not tracked as the bitmap created within
most snapshot programs tracks writes on the low level disk.
Thus, present backup systems fail to accommodate chal-
lenges posed by resizing or recreation of blocks at the block-
level.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the subject matter claimed will become
apparent to those skilled in the art upon reading this descrip-
tion in conjunction with the accompanying drawings, in
which like reference numerals have been used to designate
like elements, and in which:

FIG. 1 is a block diagram illustrating an example hardware
device in which the subject matter may be implemented;

FIG. 2 is a block diagram illustrating an example storage
system environment for performing pseudo-disk backups
according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a table that illustrates an example association of
unique record ID numbers with specific bitmaps and minor
numbers;

FIG. 4 is a flow diagram illustrating a method for tracking
resizing and recreation of volumes using a snapshot program,
under an embodiment; and

FIG. 5 is a flow diagram illustrating a method of perform-
ing an incremental backup using a snapshot program accord-
ing to embodiments.

DETAILED DESCRIPTION

The subject matter presented herein provides for backups
that operate at the volume layer and utilizes the pseudo device
layer that exists between the file system layer and the device
layer. The Veritas volume manager (VXVM) driver defines a
minor number that indexes a specific bitmap stored during a
snapshot backup operation. Re-creation or re-sizing a volume
can lead to re-use of a previously used minor number, thus
resulting in the referencing of an incorrect bitmap or deletion
of'a valid bitmap. Embodiments of a snapshot program make
use of a record ID number that is generated by the VxVM
driver. The record ID number is used as an additional index to
correlate specific minor numbers and bitmaps. During
backup operations, a process checks the record ID number to
ensure that a previously used minor number is not reused to
ensure that the corresponding bitmap remains uncorrupted.
For non VXVM systems that do not automatically generate a
record ID number, the process can include a function to create
arecord number, such as from a timestamp, that will form an
additional index to the minor number to bitmap correlation.

Embodiments are directed to a system and method for
tracking resizing and recreation of volumes in a block-based
snapshot backup program. In an embodiment, a record ID is
associated with a major and minor number assigned to each
volume to be backed up. The record ID maintains a unique
reference to the bitmap corresponding to a backed up volume
in case the minor number is reused by the volume manager
driver during a recreate operation. The length of the volume to
be maintained is maintained and compared to the length of the
bitmap to track any resizing of the volume by the volume
manager. In the event of any resizing or recreation, the origi-
nal bitmap can be modified or replaced with an updated
bitmap to ensure proper backup of the resized or recreated
volumes.

Prior to describing the subject matter in detail, an exem-
plary hardware device in which the subject matter may be
implemented shall first be described. Those of ordinary skill
in the art will appreciate that the elements illustrated in FIG.
1 may vary depending on the system implementation. With
reference to FIG. 1, an exemplary system for implementing
the subject matter disclosed herein includes a hardware
device 100, including a processing unit 102, memory 104,
storage 106, data entry module 108, display adapter 110,
communication interface 112, and a bus 114 that couples
elements 104-112 to the processing unit 102.

The bus 114 may comprise any type of bus architecture.
Examples include a memory bus, a peripheral bus, a local bus,
etc. The processing unit 102 is an instruction execution
machine, apparatus, or device and may comprise a micropro-
cessor, a digital signal processor, a graphics processing unit,
an application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), etc. The processing unit 102
may be configured to execute program instructions stored in
memory 104 and/or storage 106 and/or received via data entry
module 108.

US 9,128,943 B1

3

The memory 104 may include read only memory (ROM)
116 and random access memory (RAM) 118. Memory 104
may be configured to store program instructions and data
during operation of device 100. In various embodiments,
memory 104 may include any of a variety of memory tech-
nologies such as static random access memory (SRAM) or
dynamic RAM (DRAM), including variants such as dual data
rate synchronous DRAM (DDR SDRAM), error correcting
code synchronous DRAM (ECC SDRAM), or RAMBUS
DRAM (RDRAM), for example. Memory 104 may also
include nonvolatile memory technologies such as nonvolatile
flash RAM (NVRAM) or ROM. In some embodiments, it is
contemplated that memory 104 may include a combination of
technologies such as the foregoing, as well as other technolo-
gies not specifically mentioned. When the subject matter is
implemented in a computer system, a basic input/output sys-
tem (BIOS) 120, containing the basic routines that help to
transfer information between elements within the computer
system, such as during start-up, is stored in ROM 116.

The storage 106 may include a flash memory data storage
device for reading from and writing to flash memory, a hard
disk drive for reading from and writing to a hard disk, a
magnetic disk drive for reading from or writing to a remov-
able magnetic disk, and/or an optical disk drive for reading
from or writing to a removable optical disk such as a CD
ROM, DVD or other optical media. The drives and their
associated computer-readable media provide nonvolatile
storage of computer readable instructions, data structures,
program modules and other data for the hardware device 100.

It is noted that the methods described herein can be embod-
ied in executable instructions stored in a computer readable
medium foruse by or in connection with an instruction execu-
tion machine, apparatus, or device, such as a computer-based
or processor-containing machine, apparatus, or device. It will
be appreciated by those skilled in the art that for some
embodiments, other types of computer readable media may
be used which can store data that is accessible by a computer,
such as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, RAM, ROM, and the like may
also be used in the exemplary operating environment. As used
here, a “computer-readable medium” can include one or more
of any suitable media for storing the executable instructions
of a computer program in one or more of an electronic,
magnetic, optical, and electromagnetic format, such that the
instruction execution machine, system, apparatus, or device
can read (or fetch) the instructions from the computer read-
able medium and execute the instructions for carrying out the
described methods. A non-exhaustive list of conventional
exemplary computer readable medium includes: a portable
computer diskette; a RAM; a ROM; an erasable program-
mable read only memory (EPROM or flash memory); optical
storage devices, including a portable compact disc (CD), a
portable digital video disc (DVD), a high definition DVD
(HD-DVD™) a BLU-RAY disc; and the like.

A number of program modules may be stored on the stor-
age 106, ROM 116 or RAM 118, including an operating
system 122, one or more applications programs 124, program
data 126, and other program modules 128. A user may enter
commands and information into the hardware device 100
through data entry module 108. Data entry module 108 may
include mechanisms such as a keyboard, a touch screen, a
pointing device, etc. Other external input devices (not shown)
are connected to the hardware device 100 via external data
entry interface 130. By way of example and not limitation,
external input devices may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. In some embodi-
ments, external input devices may include video or audio

25

30

40

45

4

input devices such as a video camera, a still camera, etc. Data
entry module 108 may be configured to receive input from
one or more users of device 100 and to deliver such input to
processing unit 102 and/or memory 104 via bus 114.

A display 132 is also connected to the bus 114 via display
adapter 110. Display 132 may be configured to display output
of device 100 to one or more users. In some embodiments, a
given device such as a touch screen, for example, may func-
tion as both data entry module 108 and display 132. External
display devices may also be connected to the bus 114 via
external display interface 134. Other peripheral output
devices, not shown, such as speakers and printers, may be
connected to the hardware device 100.

The hardware device 100 may operate in a networked
environment using logical connections to one or more remote
nodes (not shown) via communication interface 112. The
remote node may be another computer, a server, a router, a
peer device or other common network node, and typically
includes many or all of the elements described above relative
to the hardware device 100. The communication interface 112
may interface with a wireless network and/or a wired net-
work. Examples of wireless networks include, for example, a
BLUETOOTH network, a wireless personal area network, a
wireless 802.11 local area network (LAN), and/or wireless
telephony network (e.g., a cellular, PCS, or GSM network).
Examples of wired networks include, for example, a LAN, a
fiber optic network, a wired personal area network, a tele-
phony network, and/or a wide area network (WAN). Such
networking environments are commonplace in intranets, the
Internet, offices, enterprise-wide computer networks and the
like. In some embodiments, communication interface 112
may include logic configured to support direct memory
access (DMA) transfers between memory 104 and other
devices.

In a networked environment, program modules depicted
relative to the hardware device 100, or portions thereof, may
be stored in a remote storage device, such as, for example, on
a server. It will be appreciated that other hardware and/or
software to establish a communications link between the
hardware device 100 and other devices may be used.

It should be understood that the arrangement of hardware
device 100 illustrated in FIG. 1 is but one possible implemen-
tation and that other arrangements are possible. It should also
be understood that the various system components (and
means) defined by the claims, described below, and illustrated
in the various block diagrams represent logical components
that are configured to perform the functionality described
herein. For example, one or more of these system components
(and means) can be realized, in whole or in part, by at least
some of the components illustrated in the arrangement of
hardware device 100. In addition, while at least one of these
components are implemented at least partially as an elec-
tronic hardware component, and therefore constitutes a
machine, the other components may be implemented in soft-
ware, hardware, or a combination of software and hardware.
More particularly, at least one component defined by the
claims is implemented at least partially as an electronic hard-
ware component, such as an instruction execution machine
(e.g., a processor-based or processor-containing machine)
and/or as specialized circuits or circuitry (e.g., discrete logic
gates interconnected to perform a specialized function), such
as those illustrated in FIG. 1. Other components may be
implemented in software, hardware, or a combination of soft-
ware and hardware. Moreover, some or all of these other
components may be combined, some may be omitted alto-
gether, and additional components can be added while still
achieving the functionality described herein. Thus, the sub-

US 9,128,943 B1

5

ject matter described herein can be embodied in many difter-
ent variations, and all such variations are contemplated to be
within the scope of what is claimed.

In the description that follows, the subject matter will be
described with reference to acts and symbolic representations
of operations that are performed by one or more devices,
unless indicated otherwise. As such, it will be understood that
such acts and operations, which are at times referred to as
being computer-executed, include the manipulation by the
processing unit of data in a structured form. This manipula-
tion transforms the data or maintains it at locations in the
memory system of the computer, which reconfigures or oth-
erwise alters the operation of the device in a manner well
understood by those skilled in the art. The data structures
where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the subject matter is being
described in the foregoing context, it is not meant to be
limiting as those of skill in the art will appreciate that various
of the acts and operation described hereinafter may also be
implemented in hardware.

To facilitate an understanding of the subject matter
described below, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims is performed by an electronic hardware compo-
nent. For example, it will be recognized that the various
actions can be performed by specialized circuits or circuitry,
by program instructions being executed by one or more pro-
cessors, or by a combination of both. The description herein
of any sequence of actions is not intended to imply that the
specific order described for performing that sequence mustbe
followed. All methods described herein can be performed in
any suitable order unless otherwise indicated herein or oth-
erwise clearly contradicted by context.

In an embodiment, system 100 of FIG. 1 represents a
Unix-based system, in which there are two general kinds of
device files, known as character (char) special files and block
special files. Character files relate to devices through which
the system transmits data one character at a time. These
device nodes often implement streaming communication
with devices such as mice, keyboards, terminal, and so on.
Block files correspond to devices through which the system
moves data in the form of blocks. These device nodes often
represent addressable devices such as memory, hard disks,
CD-ROM drives, and so on, that support random access and
seeking. Device nodes on Unix-based systems do not neces-
sarily have to correspond to physical. Nodes that lack this
correspondence form the group of pseudo-devices. Most file
systems are based on a block device, and block storage is
normally abstracted by a file system or database management
system for use by applications and end users. In backup
systems, block storage is typically handled by logical volume
management (LVM) system.

FIG. 2 illustrates a storage stack production environment
202 that may be used with embodiments. The arrangement of
components in FIG. 2 may be implemented by some or all of
the components of the hardware device 100 of FIG. 1. The
top-level of storage stack system 202 is the file system 204.
The file system 204 serves to organize the data that is retained
after a program using the data terminates. It provides proce-
dures to store, retrieve, and update the data, and manages the
available space on the storage devices that store the data.
Various different file systems may be provided by different
software vendors, and snapshot programs are configured to
support particular file systems. For example, the Snaplmage
program supports VXFS (Veritas file system) and UFS (Unix
file system). Below the filesystem layer 204 is the volume

10

15

20

25

30

35

40

45

50

55

60

65

6

manager 206, which could be VxVM, HPLVM or Solaris
LVM (logical volume manager). The volume manager 204
implements a form of storage virtualization. The volume
manager map physical volumes or “physical extents” (e.g.,
hard disk partitions or logical unit numbers) of an external
storage device to logical extents. These logical extents can
then be manipulated in flexible ways depending on the types
of disk organizations implemented in the system. For the
embodiment of FIG. 2, the volume manager 206 supports
concatenated (concat) 212, striped 214, mirror 216, and
RAID-based 218 disk organizations.

Volume managers, such as VxVM typically provide both
volume management and multi-path input/output (I/O) func-
tionalities. Thus, as shown in FIG. 2, the volume manager
layer 206 interfaces with a multipath [/O (MPIO) layer 208.
The MPIO layer 208 provides a plurality of physical paths
between the processor in the system and the mass storage
devices through the interface components (e.g., bus,
switches, etc.) to provide redundancy, fault-tolerance and
enhanced performance. In an embodiment, the MPIO layer
208 of FIG. 2 may be an MPIO that is compatible with
particular volume manager 206. For example, for a Veritas
volume manager, the MPIO may be the Symantec Dynamic
Multipathing (DMP) component, or the PowerPath™ com-
ponent provided by EMC, or any other commercially avail-
able or native MPIO component. The MPIO layer 208 pro-
vides the interface to the physical storage device 210, such as
a disk that is accessed through a unique LUN.

Embodiments of the volume manager component of FIG. 2
implement a snapshot backup program, such as the Snaplm-
age program. Snaplmage reduces the strain on server perfor-
mance through block-level image backup. SnapImage takes a
filesystem snapshot, builds a block list, and then backs up the
data through the server as virtually one large file. Although
embodiments may be directed to backup systems that include
a Snaplmage program, it should be noted that any similar
snapshot program may be used, and the term “snapshot pro-
gram” is intended to cover the Snaplmage program or any
similar volume or block-based backup program.

In general, the snapshot file system is an exact copy of the
original file system as it is made at the time of the snapshot
operation. A snapshot file system is read-only and exists only
as long as it and the file system that has been snapped are
mounted. A snapshot file system consists of a super-block, a
bitmap, ablockmap, and data blocks copied from the snapped
file system. The super-block is similar to the super-block of a
normal VXFS file system, and is followed by a bitmap con-
tains one bit for every block on the snapped file system.
Bitmap entries are initially set to zero and a set bit in the
bitmap indicates that the appropriate block was copied from
the snapped file system to the snapshot. The blockmap con-
tains one entry for each block on the snapped file system.
When a block is copied from the snapped file system to the
snapshot, the appropriate entry in the blockmap is changed to
contain the block number on the snapshot file system that
holds the data from the snapped file system. The data blocks
used by the snapshot file system are filled by any data copied
from the snapped file system.

After a snapshot file system is created, the bitmap, block-
map and super-block are initialized and the currently
mounted file system is then frozen. The snapshot file system
initially satisfies read requests by simply finding the data on
the snapped file system and returning it to the requesting
process. When an update or a write changes the dataina block
of'the snapped file system, the old data is first read and copied
to the snapshot before the snapped file system is updated. The
bitmap entry for that block is changed from O to 1 to indicate

US 9,128,943 B1

7

that the data for the block can be found on the snapped file
system. The blockmap entry for the block is changed to the
block number on the snapshot file system containing the old
data. A subsequent read request for the block on the snapshot
file system is satisfied by checking the bitmap entry for the
block and reading the data from the indicated block on the
snapshot file system, rather than from the block on the
snapped file system. As data blocks are changed on the
snapped file system, the snapshot will gradually fill with data
copied from the snapped file system.

Certain use cases can impose challenges on the accuracy of
the snapshot file system in a block-based system. For
example, recreating or resizing data volumes for underlying
sliced partitions may pose problems when using the underly-
ing major/minor number structure of the Veritas volume man-
ager. In general, the disk size cannot be changed since it is set
by the system parameters (e.g., RAID size, etc.). The length
of the bitmap corresponds to the length of the physical disk.
The size of the volumes, however can usually be changed
through appropriate graphical user interface mechanisms.
Furthermore, volumes can be deleted or recreated by the user.
To ensure proper operation of the snapshot program, any
changes to the size of'a volume (resizing), and any deletion or
recreation of a volume must be tracked.

For an embodiment in which the volume manager 206 of
storage stack system 202 is the Veritas volume manager
VXVM, a pseudo device of the volume is created by the
volume manager layer. UNIX as an operating system man-
dates that each pseudo device be given a unique number
called a minor device number. This minor device number is
unique for a particular type of device. Each type of device is
also uniquely identified by a major number. Thus, device
nodes correspond to resources that the OS kernel has already
allocated, and these resources are identified by a major num-
ber and a minor number. Generally, the major number iden-
tifies the device driver and the minor number identifies a
particular device that the driver controls. In a VXVM system,
the VXVM driver defines the minor numbers assigned to the
volumes. For example, minor numbers may be assigned in the
range of 0-64K and may start at any number. One issue that is
associated with VXVM systems is that the minor numbers
assigned to recreated, deleted, or resized volumes can be
reused by the system. In this case, the bitmap associated with
the original minor number by the snapshot program for an
incremental backup will reference incorrect data if the minor
number is reused in a subsequent snapshot.

During normal operation, the Veritas volume manager cre-
ates a pseudo device of the volume. Since the file system
resides on these devices, the volume manager not only
exposes a character device but also a block device for the
volume. For systems that perform backups at the disk-level
only, the reuse of minor numbers is generally not an issue. For
systems that perform backups at the volume-level, however,
the reuse of minor numbers associated with recreation of
volumes is an issue.

In order to overcome the issue associated with reuse of
minor numbers by the VXVM driver for recreated or deleted
volumes, in an embodiment, the snapshot backup system
associates another unique number known as “Record ID” or
“RID” with each bitmap. In an embodiment, the RID is a
unique floating point number, with an integer and fractional
part. The recreating of a volume may result in same minor
number but it always comes with unique record ID. The
snapshot program associates its internal data structures with
the major number, minor number, and unique RID. FIG. 3 is
atable that illustrates an example association of unique record
ID numbers with specific bitmaps and minor numbers. As

10

20

25

30

40

45

50

55

8

shown in table 300, six example bitmaps 304 denoted BM1 to
BM6 are created for certain snapshot backup operations. Cor-
responding minor numbers 302 from 1010 to 1111 are ini-
tially assigned to each of the respective bitmaps. In addition,
a unique record ID number 306 is assigned to each minor
number. Thus, for the example of FIG. 3, RID 1.0 is assigned
to minor number 1010, RID 2.0 is assigned to minor number
1011, and so on. In the case that the VXVM driver reuses a
particular minor number, the record ID number provides a
unique identifier that preserves the assignment of the specific
bitmap to the originally assigned minor number. During data
access, the snapshot program checks against the RID number
before accessing the bitmap for a volume for which backup is
requested. In this way, the proper bitmap can be accessed even
if the minor number has been reused by the VxVM driver.

In an embodiment, the record ID number 306 is a floating
point number that is automatically generated by the VxVM
driver upon initiation of a backup operation. The VxVM RID
is then used by the snapshot system as the record ID number
306. For volume managers that do not automatically produce
a record ID number (e.g., Solaris), the snapshot program
driver may generate its own record ID number. In an embodi-
ment, the record ID number is generated by a counter that
generates a unique floating point number for every backup
operation. Such a counter can be implemented through a time
stamp component or a sequential counter, or similar compo-
nent.

Along with deletion or recreation of volumes, the resizing
of volumes can also cause inaccuracy of backups in volume-
based systems. The VxVM driver provides an option to resize
a previously created volume. The resizing of a volume may
result in increasing or decreasing the size of file system resid-
ing on the volume. In an embodiment, the snapshot program
provides a mechanism to track the write operations that occur
on the changed size file system. The snapshot driver creates a
bitmap for the disk and the length of the bitmap is based onthe
length of the volume. By discovering the length and compar-
ing the length of the bitmap against the length of volume, the
snapshot program can track the re-sizing of the volume.

FIG. 4 is a flow diagram illustrating a method for tracking
resizing and recreation of volumes using a snapshot program,
under an embodiment. Flowchart 400 generally illustrates a
process of how events are triggered to tracking re-creation
and resizing of volumes using record ID and length param-
eters in a snapshot driver. Flowchart 400 includes two process
flows, one for the snapshot user space 402 and one for the
driver component 403. The process flow for the snapshot user
space 402 begins with a discovery phase 404 in which the
record ID and length of the volume are obtained. The driver is
then initialized in block 406. During this initialization phase,
the driver is loaded with initialization information including
the length of the volume, the record ID and the major and
minor number of the volume. The driver then processes this
information through its own flow process 403 to perform the
backup operation, block 408.

For the embodiment of FIG. 4, the driver flow process 403
begins with a driver attach step 410. Upon initialization 406
of the attached driver by the snapshot user space, the driver
gets the object associated with the driver corresponding to the
disk identified by the major/minor number pair, block 412. In
decision block 414, it is determined whether or not the object
is null. If the object is null, the driver next determines if the
device is a managed device, block 416. If it is a managed
device, the driver uses the length received and creates a bit
map, block 418. The driver then creates the device instance,
the pseudo device, and overwrites the strategy and detaches
the routine for the major number, block 420. At this point, the

US 9,128,943 B1

9

backup operation can be performed, block 408. In the case
that the device is not a managed device, as determined in
block 416, the driver gets the length, the part number, the part
length, and so on, using an input/output control (IOCTL),
which s a system call for device-specific operations and other
operations which cannot be expressed by regular system
calls, block 417. The process then proceeds from block 420 in
which the device instance is created and the backup is per-
formed.

If, in block 414 it is determined that the object is not null,
the process again determines if the device is a managed
device, block 424. If the object is not null and the device is
managed, the backup is deemed to be in incremental backup,
in which case, the backup operation is performed, block 408.
If the object is not null and the device is managed, the driver
then checks to see whether the length of the block is the same
as shown in decision block 426. If the length is not the same,
a resize condition exists in which case the bitmap and other
data structures are destroyed, block 430 and the process pro-
ceeds from block 418 to create a bitmap using the length
received during the initialization phase. If, in block 426 it is
determined that the length is the same then the block has not
been resized and the driver checks to see whether the record
ID number is the same, block 428. If the RID is not the same,
then a recreate condition exists in which case the bitmap and
other data structures are destroyed, block 430 and the process
proceeds from block 418 to create a bitmap using the length
received during the initialization phase. If, in block 428 it is
determined that the RID is the same, then the driver deems
that the operation is an incremental backup and proceeds
through block 422 to perform the backup, block 408.

In an embodiment, the record ID number is created auto-
matically by the VXVM driver and is provided to the snapshot
user space 402 through the discovery phase 404. This RID
number is then passed to the driver through the get object
process of block 412. Alternatively, the RID number may be
a timestamp or counter value that is created by a separate
process and not by the volume manager itself. In this case, it
is generated and stored by this process and provided to the
driver during the discovery and initialization phases.

FIG. 5 is a flow diagram illustrating a method of perform-
ing an incremental backup using a snapshot program accord-
ing to embodiments. Flowchart 500 includes two process
flows, one for the snapshot user space 502 and one for the
driver component 504. The process flow for the snapshot user
space 502 begins with a discovery phase 506 in which the file
system (FS), volume manager (VM) or unmanaged resources
are discovered. The changed blocks from the driver are
obtained in block 508 through operations performed by the
driver in driver flow 504. After the changed blocks are
obtained, the snapshot process performs the incremental
backup by backing up the changed blocks, block 510.

For the embodiment of FIG. 5, the driver flow process 504
begins with a driver attach step 512. Upon initialization of the
attached driver by the snapshot user space, the driver gets the
object associated with the driver corresponding to the disk
identified by the major/minor number pair, block 514. The
driver then converts the obtained bitmap into an extent list,
block 516. The extent list is then transmitted back to the user
space 502, as shown in block 518, and the incremental backup
based on the changed blocks is then performed, block 510.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the subject matter (par-
ticularly in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by context.
Recitation of ranges of values herein are merely intended to

10

15

20

25

30

35

40

45

50

55

60

65

10

serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise indi-
cated herein, and each separate value is incorporated into the
specification as if it were individually recited herein. Further-
more, the foregoing description is for the purpose of illustra-
tion only, and not for the purpose of limitation, as the scope of
protection sought is defined by the claims as set forth here-
inafter together with any equivalents thereof entitled to. The
use of any and all examples, or exemplary language (e.g.,
“such as”) provided herein, is intended merely to better illus-
trate the subject matter and does not pose a limitation on the
scope of the subject matter unless otherwise claimed. The use
of the term “based on” and other like phrases indicating a
condition for bringing about a result, both in the claims and in
the written description, is not intended to foreclose any other
conditions that bring about that result. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice of the invention as
claimed.

Preferred embodiments are described herein, including the
best mode known to the inventor for carrying out the claimed
subject matter. Of course, variations of those preferred
embodiments will become apparent to those of ordinary skill
in the art upon reading the foregoing description. The inven-
tor expects skilled artisans to employ such variations as
appropriate, and the inventor intends for the claimed subject
matter to be practiced otherwise than as specifically described
herein. Accordingly, this claimed subject matter includes all
modifications and equivalents of the subject matter recited in
the claims appended hereto as permitted by applicable law.
Moreover, any combination of the above-described elements
in all possible variations thereof is encompassed unless oth-
erwise indicated herein or otherwise clearly contradicted by
context.

What is claimed is:
1. A method comprising:
generating a unique record identifier for each of a plurality
of minor numbers for a plurality of volumes of a storage
element to be backed up in a snapshot file system, each
of the plurality of minor numbers referencing one of a
plurality of bitmaps for a volume, wherein each of the
plurality of minor numbers is assignable to one or more
of the plurality of volumes, and wherein each of the
plurality of bitmaps contains a pattern indicating blocks
backed up in the snapshot file system;
associating each unique record identifier with the bitmap
referenced by the corresponding minor number; and

tracking changes to one of the plurality of volumes using at
least one unique record identifier, a length of the bitmap
corresponding to that unique record identifier, and a
length of the volume.

2. The method of claim 1 wherein the unique record iden-
tifier is a floating point number comprising an integer and
fractional portion, and wherein the unique record identifier is
to be generated by a volume manager.

3. The method of claim 1 wherein the unique record iden-
tifier is a floating point number comprising an integer and
fractional portion, and wherein the unique record identifier is
to be generated by a counter using sequential numbering.

4. The method of claim 1 wherein the minor number is
assigned by a volume manager.

5. The method of claim 4, wherein tracking the changes to
one of the plurality of volumes using the at least one unique
record identifier, the length of the bitmap corresponding to
that unique record identifier, and the length of the volume
comprises:

US 9,128,943 B1

11

comparing the unique record identifier of the volume with
the unique record identifier associated with the bitmap;
and

performing an incremental backup operation based on the

unique record identifier of the volume matching the
unique record number associated with the bitmap, or
generating a new bitmap for the volume as recreated by
the volume manager based on the unique record identi-
fier of the volume not matching with the unique record
identifier associated with the bitmap.

6. The method of claim 5, wherein performing the incre-
mental backup operation comprises:

comparing the length of the volume with the length of the

bitmap; and
performing an incremental backup operation based on the
length of the volume matching the length of the bitmap,
or generating a new bitmap for the volume as recreated
by the volume manager based on the length of the vol-
ume not matching the length of the bitmap.
7. The method of claim 6 wherein the volume corresponds
to a managed device, and wherein the new bitmap is created
using the length of the volume.
8. The method of claim 6 wherein the volume corresponds
to a non-managed device, and wherein the new bitmap is
created using an input/output control process.
9. The method of claim 1 wherein a first minor number
referencing a first bitmap is similar to a second minor number
referencing a second bitmap, wherein the second bitmap is
different from the first bitmap, and wherein a first unique
record number associated with the first bitmap is different
from a second unique record number associated with the
second bitmap.
10. A computer program product, comprising a non-tran-
sitory computer-readable medium having a computer-read-
able program code embodied therein, the computer-readable
program code adapted to be executed by one or more proces-
sors to implement a method comprising:
generating a unique record identifier for each of a plurality
of minor numbers for a plurality of volumes of a storage
element to be backed up in a snapshot file system, each
of the plurality of minor numbers referencing one of a
plurality of bitmaps for a volume, wherein each of the
plurality of minor numbers is assignable to one or more
of the plurality of volumes, and wherein each of the
plurality of bitmaps contains a pattern indicating blocks
backed up in the snapshot file system;
associating each unique record identifier with the bitmap
referenced by the corresponding minor number; and

tracking changes to one of the plurality of volumes using at
least one unique record identifier, a length of the bitmap
corresponding to that unique record identifier, and a
length of the volume.

11. The computer program product of claim 10 wherein the
unique record identifier is a floating point number comprising
an integer and fractional portion, and wherein the unique
record identifier is generated by a volume manager or a
counter using a sequential sequence.

12. The computer program product of claim 11 wherein
tracking the changes to one of the plurality of volumes using
the at least one unique record identifier, the length of the
bitmap corresponding to that unique record identifier, and the
length of the volume comprises:

comparing the unique record identifier of the volume with

the unique record identifier associated with the bitmap;
and

performing an incremental backup operation based on the

unique record identifier of the volume matching the

12

unique record number associated with the bitmap, or
generating a new bitmap for the volume as recreated by
the volume manager based on the unique record identi-
fier of the volume not matching the unique record iden-
5 tifier associated with the bitmap.
13. The computer program product of claim 10 wherein the
minor number is assigned by a volume manager.
14. The computer program product of claim 13 wherein the
computer-readable program code is further adapted to imple-
10 ment a method comprising:

comparing the length of the volume with the length of the

bitmap; and

performing an incremental backup operation based on the

length of the volume matching the length of the bitmap,
or generating a new bitmap for the volume as recreated
by the volume manager based on the length of the vol-
ume not matching the length of the bitmap.

15. The computer program product of claim 14 wherein the
volume corresponds to a managed device, and wherein the
20 new bitmap is generated based on the length of the volume.

16. The computer program product of claim 14 wherein the
volume corresponds to a non-managed device, and wherein
the new bitmap is generated using an input/output control
process.

17. A system comprising:

a processor; and

memory configured to store one or more sequences of

instructions which, when executed by the processor,
cause the processor to carry out the steps of:
generating a unique record identifier for each of a plu-
rality of minor numbers for a plurality of volumes of
a storage element to be backed up in a snapshot file
system, each of the plurality of minor numbers refer-
encing one of a plurality of bitmaps for a volume,
wherein each of the plurality of minor numbers is
assignable to one or more of the plurality of volumes,
and wherein each of the plurality of bitmaps contains
a pattern indicating blocks backed up in the snapshot
file system;
associating each unique record identifier with the bitmap
referenced by the corresponding minor number; and
tracking changes to one of the plurality of volumes using at
least one unique record identifier, a length of the bitmap
corresponding to that unique record identifier, and a
length of the volume.

18. The system of claim 17 wherein the unique record
identifier is a floating point number comprising an integer and
fractional portion, and wherein the unique record identifier is
generated by a volume manager upon a backup operation
performed on the volume or a counter configured to assign a
unique sequential number for each backup operation per-
formed on the volume.

19. The system of claim 18 wherein the processor is further
configured to carry out the steps of:

comparing the unique record identifier for the specific

minor number with the unique record identifier for the
corresponding bitmap; and

performing an incremental backup operation based on the

unique record identifier of the volume matching the
unique record identifier associated with the bitmap, or
creating a new bitmap for the volume as recreated by the
volume manager based on the unique record identifier of
the volume not matching the unique record identifier.

20. The system of claim 19 wherein the processor is further
65 configured to carry out the steps of:

comparing the length of the volume with the length of the
bitmap; and

15

30

35

40

45

50

55

60

US 9,128,943 B1
13

performing an incremental backup operation based on the
length of the volume matching the length of the bitmap,
or creating a new bitmap for the volume as recreated by
the volume manager based on the length of the volume
not matching the length of the bitmap. 5

#* #* #* #* #*

14

